.RU

Программа «Развитие математических способностей у детей дошкольного возраста»




Программа

«Развитие математических способностей у детей дошкольного возраста»


Выполнила: Андреева Марина Николаевна,

воспитатель высшей квалификационной

категории Муниципального дошкольного

образовательного учреждения «Детский сад

общеразвивающего вида № 4

«Лукоморье» г. Соль – Илецка

Оренбургской области.


СОДЕРЖАНИЕ

Глава 1

1.1 Пояснительная записка………….4

1. 2 .«Концепция математического развития ребенка

младшего возраста»……………………………8

Глава 2. РАЗВИТИЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ У ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА

2.1 Специфика развития математических способностей ……10

2.2 Формирование математических способностей детей

дошкольного возраста. Логическое мышление………………………12

2.3.«Моделирование как образовательная технология математического развития дошкольников и младших школьников»……………………16
Глава 3. ДИДАКТИЧЕСКИЕ ИГРЫ В ПРОЦЕССЕ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА 3.1 Роль дидактических игр …………………….17
2.2 Методика обучения счету и основам математики детей дошкольного возраста через игровую деятельность……………………19

ЗАКЛЮЧЕНИЕ……………………………………………………...…………..28

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ………………………….……..30

ПРИЛОЖЕНИЕ……………………………………….………………………....32


Глава 1

    1. ^ Пояснительная записка.

Наименее разработанными вопросами являются в теории и практике «развитие математических способностей» ребенка в системе дошкольного и начального школьного образования.

В условиях развития вариативности и разнообразия дошкольного образования в последнее десятилетие происходит внедрение в практику работы дошкольных образовательных учреждений альтернативных образовательных программ, реализующих различные подходы к вопросам образования и развития ребенка дошкольного возраста. В этой связи, с теоретической и практической точек зрения все более актуализируется проблема разработки концептуальных подходов к построению системы непрерывного преемственного математического образования дошкольников и младших школьников, определения целей и оптимальных границ образовательного содержания дошкольных программ и их взаимосвязи со школьными программами, обеспечения качества и полноты методического обеспечения этих программ.

Вопросы разработки концепции непрерывного математического развития ребенка дошкольного и младшего школьного возраста являются новыми для дошкольного образования, поскольку дошкольная педагогика традиционно ограничивалась созданием педагогических концепций воспитания дошкольника. Попытка решить указанные проблемы средствами создания содержательно обновленных, но методически не разработанных программ дошкольного образования (т.е. ограничиться только разработкой содержательной стороны) привела на сегодня к целому ряду противоречий в дошкольном математическом образовании, от которых страдают и дети, и педагоги – воспитатели. Таким образом, необходимость разработки концепции непрерывного математического развития ребенка дошкольного и младшего школьного возраста обусловлена, с одной стороны, современными требованиями к организации личностно-ориентированного образовательного процесса в ДОУ, цель которого – развитие ребенка, а, с другой стороны, необходимостью решения проблемы создания непрерывного образовательного процесса на дошкольном и начальном школьном этапе, цель которого, опять таки – развитие личности обучаемого в соответствии с его индивидуальными особенностями.

Вопрос о необходимости и возможности организации развивающего обучения ребенка младшего школьного возраста в процессе обучения математике весьма активно разрабатывается в дидактике и методике обучения в начальных классах (Л.В. Занков, В.В. Давыдов, Н.Б.Истомина, А.А.Столяр, П.Э Эрдниев и др.). В дошкольном воспитании вопрос развития личности ребенка связывается в основном с развитием творческих способностей и работой с одаренными детьми. Многочисленные исследования педагогов и психологов посвящены проблемам исследования и формирования творческих способностей ребенка (А.К.Бондаренко, В.Я.Воронова, Р.И.Жуковская, Т.А.Маркова, Д.В. Менджерицкая, Е.А.Флерина и др.). Психолого-педагогические условия, закономерности и механизмы развития различных способностей детей в последние годы являются предметом активных исследований ученых в рамках проблемы детской одаренности (Ю.Д.Бабаева, Е.С.Белова, Ю.З.Гильбух, Н.С.Лейтес, Е.Л.Мельникова, В.И.Панов, Т.В.Симаева, А.И.Савенков, М.И.Фидельман, Н.Б.Шумакова, Е.И.Щебланова, В.С.Юркевич, Е.Л.Яковлева и др.).

Понятие «развитие математических способностей» является довольно сложным, комплексным и многоаспектным. Оно состоит из взаимосвязанных и взаимообусловленных представлений о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования у ребенка «житейских» и «научных» понятий. В то же время специальные исследования в области развития математических способностей ребенка дошкольного и младшего школьного возраста практически отсутствуют. При этом понятие «математическое развитие» рассмотрено только в последних двух исследованиях, где оно понимается как формирование математических знаний и умений у ребенка. Таким образом, даже в рамках исследований о развитии познавательных способностей и творческой одаренности детей младшего возраста, математическому развитию ребенка уделено мало внимания. При этом понятие «математическое развитие» трактуется в основном как формирование и накопление математических знаний и умений.

Под математическим развитием дошкольников понимаются качественные изменения в познавательной деятельности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций. Математическое развитие — значимый компонент в формировании «картины мира» ребенка.

Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом. «математическое развитие дошкольника - это процесс качественного изменения в интеллектуальной сфере личности, который происходит в результате формирования у ребенка математических представлений и понятий»1 .

Таким образом, математическое развитие рассматривается как следствие обучения математическим знаниям. В какой-то мере это, безусловно, наблюдается в некоторых случаях, но происходит далеко не всегда. Если бы данный подход к математическому развитию ребенка был верным, то достаточно было бы отобрать круг знаний, сообщаемых ребенку, и подобрать «под них» соответствующий метод обучения, чтобы сделать этот процесс реально продуктивным, т.е. получать в результате «поголовное» высокое математическое развитие у всех детей.

В исследованиях Д.Б.Эльконина и В.В. Давыдова было достаточно убедительно доказано в частности, что проблема обновления содержания обучения в начальных классах является частью проблемы организации развивающего обучения ребенка младшего школьного возраста. Психологическое обоснование важности и особой значимости этой проблемы было разработано Д. Б. Элькониным (1960, 1966) и В. В. Давыдовым (1966, 1972), в исследованиях которых было детально показано, что одним из решающих факторов в развитии мышления младших школьников выступает содержание обучения. Таким образом, связь между содержанием обучения и процессом развития мышления ребенка, несомненно, существует, но ее нельзя считать достаточным условием обеспечения математического развития ребенка.

В начальной школе курс математики вовсе не прост. Зачастую дети испытывают разного рода затруднения при освоении школьной программы по математике. Возможно, одной из основных причин подобных трудностей является потеря интереса к математике как предмету.

Следовательно, одной из наиболее важных задач воспитателя и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме поможет ребенку в дальнейшем быстрее и легче усваивать школьную программу.


1.2.«Концепция математического развития ребенка младшего возраста» представляет собой систему взглядов на психолого-дидактическое обоснование, цели, содержание, способы и средства организации непрерывного целенаправленного преемственного математического развития ребенка на дошкольном и начальном школьном этапе обучения. Она выражает необходимость и возможность методического руководства процессом развития математического мышления и математических способностей ребенка младшего возраста.

^ Психолого-дидактическим обоснованием концепции является своеобразие возрастного развития познавательных и когнитивных процессов ребенка младшего возраста, обусловленное тем, что в возрасте 3-5 лет ведущим типом мышления ребенка является наглядно – действенный тип, а в возрасте 6 –10 лет – наглядно-образный тип мышления. Возраст 10 –12 лет является переходным к ведущему абстрактному (словесно-логическому) типу мышления. Это обусловливает необходимость использования для организации математического развития ребенка на каждом из обозначенных этапов соответствующего содержания и методологии, максимально соответствующих «детскому способу» вхождения в математику оптимально возрасту ребенка. В исследовании доказано, что главным направлением организации математического развития ребенка дошкольного возраста является целенаправленное развитие конструктивного мышления, а ребенка младшего школьного возраста – развитие пространственного мышления. Эти виды математического мышления сенситивны указанным возрастам, и потому наиболее чувствительны к методическому развивающему воздействию педагога.

^ Методологическим обоснованием концепции является выбор в качестве ведущего метода обучения детей математическому содержанию метода моделирования, с преимущественным использованием на каждом возрастном этапе того вида моделирования, который более всего соответствует возрастным особенностям развития мышления и других познавательных процессов. В возрасте 3-5 лет - это конструирование (вещественное моделирование), в возрасте 6-10 лет – это сочетание конструирования с графическим моделированием с постепенным перенесением акцента на второе, в возрасте 10-12 лет – это графическое моделирование с элементами конструирования там, где необходимо практическое приложение знаний и умений ребенка в математике, и с элементами логико-символического моделирования (знакового и символьного) в качестве подготовки к переходу ребенка на ведущий словесно-логический (абстрактный) тип мышления в старшем возрасте. Такой подход к выбору ведущего метода обучения обеспечивает эффективное развитие приемов умственной деятельности у ребенка (анализа, синтеза, абстрагирования, обобщения и др.), развитие практико-ориентированной интуиции в применении математических знаний, самостоятельности в учебно-познавательной деятельности и таких качеств математического мышления как гибкость, критичность, активность, целенаправленность и др.

В свою очередь, модель изучаемого математического понятия или отношения играет роль универсального средства изучения свойств математических объектов. При этом наиболее целесообразным содержанием для организации процесса непрерывного математического развития ребенка младшего возраста является геометрический материал, поскольку модель геометрического понятия или отношения можно построить в любом необходимом виде (вещественном, графическом, символьном) в соответствии с целями обучения и возможностями и особенностями восприятия ребенка в каждый из указанных возрастных этапов. Логическая структурная стройность геометрического содержания позволяет выстроить систему необходимых логико-конструктивных заданий для детей всех указанных возрастов с целью организации их математического развития. При этом такая система позволяет адресовать процесс математического развития любому ребенку (как математически способному, так и ребенку без особых исходных возможностей в освоении математики). Опыт практической реализации предлагаемой системы показал ее высокую эффективность при организации математического развития детей с различными природными данными: во всех случаях наблюдалось значительное продвижение ребенка по пути математического развития.


^ Глава 2. РАЗВИТИЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ У ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА


2.1 Специфика развития математических способностей


В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей дошкольников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально – психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности – сложное, интегральное, психическое образование, своеобразный синтез свойств, или как их называют компонентов.

Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть, как далеко может пойти это развитие.

Говоря о математических способностях как особенностях умственной деятельности, следует, прежде всего, указать на несколько распространенных среди педагогов заблуждений.

Во-первых, многие считают, что математические способности заключаются, прежде всего, в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике дошкольники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):

1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

3) Способность к оперированию числовой и знаковой символикой;

4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.


^ 2.2 Формирование математических способностей детей

дошкольного возраста. Логическое мышление
Многие родители полагают, что главное при подготовке к школе - это познакомить ребенка с цифрами и научить его писать, считать, складывать и вычитать (на деле это обычно выливается в попытку выучить наизусть результаты сложения и вычитания в пределах 10). Однако при обучении математике по учебникам современных развивающих систем (система Л. В. Занкова, система В. В. Давыдова, система "Гармония", "Школа 2100" и др.) эти умения очень недолго выручают ребенка на уроках математики. Запас заученных знаний кончается очень быстро (через месяц-два), и несформированность собственного умения продуктивно мыслить (то есть самостоятельно выполнять указанные выше мыслительные действия на математическом содержании) очень быстро приводит к появлению "проблем с математикой».
В то же время ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам школьной программы (счету, вычислениям и
т. п.). Не случайно в последние годы во многих школах, работающих по развивающим программам, проводится собеседование с детьми, поступающими в первый класс, основным содержанием которого являются вопросы и задания логического, а не только арифметического, характера. Закономерен ли такой подход к отбору детей для обучения? Да, закономерен, поскольку учебники математики этих систем построены таким образом, что уже на первых уроках ребенок должен использовать умения сравнивать, классифицировать, анализировать и обобщать результаты своей деятельности.

Однако не следует думать, что развитое логическое мышление - это природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны). Прежде всего разберемся в том, из чего складывается логическое мышление.

Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, сериация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. При организации специальной развивающей работы над формированием и развитием логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка.

Для выработки определенных математических умений и навыков необходимо развивать логическое мышление дошкольников. В школе им понадобятся умения сравнивать, анализировать, конкретизировать, обобщать. Поэтому необходимо научить ребенка решать проблемные ситуации, делать определенные выводы, приходить к логическому заключению. Решение логических задач развивает способность выделять существенное, самостоятельно подходить к обобщениям (см. Приложение).

Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость.

Логические задачки могут быть следующими:

- У двух сестер по одному брату. Сколько детей в семье? (Ответ: 3)

Очевидно, что конструктивная деятельность ребенка в процессе выполнения данных упражнений развивает не только математические способности и логическое мышление ребенка, но и его внимание, воображение, тренирует моторику, глазомер, пространственные представления, точность и т. д.

Каждое из приведенных в Приложении упражнений направлено на формирование логических мыслительных приемов. Например, упражнение 4 учит ребенка сравнивать; упражнение 5 - сравнивать и обобщать, а также анализировать; упражнение 1 учит анализу и сравнению; упражнение 2 - синтезу; упражнение 6 - фактическая классификация по признаку.

Логическое развитие ребенка предполагает также формирование умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи.

Таким образом, за два года до школы можно оказать значимое влияние на развитие математических способностей дошкольника. Даже если ребенок не станет непременным победителем математических олимпиад, проблем с математикой у него в начальной школе не будет, а если их не будет в начальной школе, то есть все основания рассчитывать на их отсутствие и в дальнейшем.

^ 2.3. «Моделирование как образовательная технология математического развития дошкольников и младших школьников».

Доказано, что в качестве общей методологии математического развития ребенка младшего возраста может быть рассмотрено моделирование. Являясь специфической опосредованной формой мышления, моделирование, будучи сформировано в специальном обучении, выступает впоследствии как универсальная, общая интеллектуальная способность ребенка, а для дошкольника - и как основное средство продуктивной интеллектуальной деятельности. В математике использование этой методологии требует построения сенсорно воспринимаемых ребенком адекватных моделей изучаемых понятий, а также построения системы моделирующих действий ребенка, связанных не только с изучением предлагаемой ему модели, но и позволяющих ребенку самому построить модель этого понятия, и через процесс ее построения осознать основные свойства и отношения изучаемых математических объектов. При таком подходе к формированию начальных математических представлений учитывается не только специфика математики – науки, изучающей количественные и пространственные характеристики реальных объектов и процессов, но и происходит обучение общим способам деятельности с математическими моделями реальной действительности и способам построения этих моделей.

Являясь общим приемом изучения действительности, моделирование позволяет эффективно формировать такие приемы умственной деятельности как классификация, сравнение, анализ и синтез, обобщение, абстрагирование, индуктивные и дедуктивные способы рассуждений, что в свою очередь стимулирует в перспективе интенсивное развитие словесно-логического мышления. Таким образом, можно считать, что данный подход будет обеспечивать формирование и развитие математического мышления ребенка. Данный методический подход к обучению математике на дошкольном этапе является преемственным и способствующим математическому развитию ребенка на дошкольном и начальном школьном этапах обучения, поскольку ориентирован на эффективное достижение тех же целей, что и процесс обучения математике в школе.


^ Глава 3. ДИДАКТИЧЕСКИЕ ИГРЫ В ПРОЦЕССЕ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДЕТЕЙ ДОШКОЛЬНОГО ВОЗРАСТА 3.1 Роль дидактических игр Дидактическая игра как самостоятельная игровая деятельность основана на осознанности этого процесса. Самостоятельная игровая деятельность осуществляется лишь в том случае, если дети проявляют интерес к игре, ее правилам и действиям, если эти правила ими усвоены. Как долго может интересовать ребенка игра, если ее правила и содержание хорошо ему известны? Вот проблема, которую необходимо решать почти непосредственно в процессе работы. Дети любят игры, хорошо знакомые, с удовольствием играют в них. Какое же значение имеет игра? В процессе игры у детей вырабатывается привычка сосредотачиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлёкшись, дети не замечают, что учатся: познают, запоминают новое, ориентируются в необычных ситуациях, пополняют запас представлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием, прилагают все усилия, чтобы не подвести товарищей по игре.
В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.

В отличие от других видов деятельности игра содержит цель в самой себе; посторонних и отделенных задач в игре ребенок не ставит и не решает. Игра часто и определяется как деятельность, которая выполняется ради самой себя, посторонних целей и задач не преследует.

Для ребят дошкольного возраста игра имеет исключительное значение: игра для них – учеба, игра для них – труд, игра для них - серьезная форма воспитания. Игра для дошкольников – способ познания окружающего мира. Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребенка: на чувства, на сознание, на волю и на поведение в целом.
Однако если для воспитанника цель - в самой игре, то для взрослого, организующего игру, есть и другая цель - развитие детей, усвоение ими определенных знаний, формирование умений, выработка тех или иных качеств личности. В этом, между прочим, одно из основных противоречий игры как средства воспитания: с одной стороны - отсутствие цели в игре, а с другой - игра есть средство целенаправленного формирования личности. В наибольшей степени это проявляется в так называемых дидактических играх. Характер разрешения этого противоречия и определяет воспитательную ценность игры: если достижение дидактической цели будет осуществлено в игре как деятельности, заключающей цель в самой себе, то воспитательная ее ценность будет наиболее значимой. Если же дидактическая задача решается в игровых действиях, целью которых и для их участников является этой дидактической задачи, то воспитательная ценность игры будет минимальной.
Игра ценна только в том случае, когда она содействует лучшему пониманию математической сущности вопроса, уточнению и формированию математических знаний учащихся. Дидактические игры и игровые упражнения стимулируют общение, поскольку в процессе проведения этих игр взаимоотношения между детьми, ребенком и родителем, ребенком и педагогом начинают носить более непринуждённый и эмоциональный характер.
Свободное и добровольное включение детей в игру: не навязывание игры, а вовлечение в нее детей. Дети должны хорошо понимать смысл и содержание игры, ее правила, идею каждой игровой роли. Смысл игровых действий должен совпадать со смыслом и содержанием поведения в реальных ситуациях с тем, чтобы основной смысл игровых действий переносился в реальную жизнедеятельность. В игре должны руководствоваться принятыми в обществе нормами нравственности, основанными на гуманизме, общечеловеческих ценностях. В игре не должно унижаться достоинство ее участников, в том числе и проигравших.
Таким образом, дидактическая игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.


^ 3.2 Методика обучения счету и основам математики детей дошкольного возраста через игровую деятельность


В современных школах программы довольно насыщены, существуют экспериментальные классы. Кроме того, все стремительнее входят в наши дома новые технологии: во многих семьях для обучения и развлечения детей приобретают компьютеры. Требование знаний основ информатики предъявляет нам сама жизнь. Все это обусловливает необходимость знакомства ребенка с основами информатики уже в дошкольный период.

В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета.

При обучении детей основам математики и информатики важно, чтобы к началу обучения в школе они имели следующие знания:

- счет до десяти в возрастающем и убывающем порядке, умение узнавать цифры подряд и вразбивку, количественные (один, два, три...) и порядковые (первый, второй, третий...) числительные от одного до десяти;

- предыдущие и последующие числа в пределах одного десятка, умение составлять числа первого десятка;

- узнавать и изображать основные геометрические фигуры (треугольник, четырехугольник, круг);

- доли, умение разделить предмет на 2-4 равные части;

- основы измерения: ребенок должен уметь измерять длину, ширину, высоту при помощи веревочки или палочек;

- сравнивание предметов: больше - меньше, шире - уже, выше - ниже;

- основы информатики, которые пока являются факультативными и включают в себя понимание следующих понятий: алгоритмы, кодирование информации, вычислительная машина, программа, управляющая вычислительной машиной, формирование основных логических операций - "не", "и", "или" и др.

Основу из основ математики составляет понятие числа. Однако число, как, впрочем, практически любое математическое понятие, представляет собой абстрактную категорию. Поэтому зачастую возникают трудности с тем, чтобы объяснить ребенку, что такое число, цифра.

Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. Такие игры учат ребенка понимать некоторые сложные математические понятия, формируют представление о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы.

При использовании дидактических игр широко применяются различные предметы и наглядный материал, который способствует тому, что занятия проходят в веселой, занимательной и доступной форме.

Если у ребенка возникают трудности при счете, покажите ему, считая вслух, два синих кружочка, четыре красных, три зеленых. Попросите его самого считать предметы вслух. Постоянно считайте разные предметы (книжки, мячи, игрушки и т. д.), время от времени спрашивайте у ребенка: "Сколько чашек стоит на столе?", "Сколько лежит журналов?", "Сколько детей гуляет на площадке?" и т. П.

Приобретению навыков устного счета способствует обучение малышей понимать назначение некоторых предметов бытового обихода, на которых написаны цифры. Такими предметами являются часы и термометр.

Такой наглядный материал открывает простор для фантазии при проведении различных игр. Научив малыша измерять температуру, просите его ежедневно определять температуру на наружном термометре. Вы можете вести учет температуры воздуха в специальном "журнале", отмечая в нем ежедневные колебания температуры. Анализируйте изменения, просите ребенка определить понижение и повышение температуры за окном, спросите, на сколько градусов изменилась температура. Составьте вместе с малышом график изменения температуры воздуха за неделю или месяц.

Читая ребенку книжку или рассказывая сказки, когда встречаются числительные, просите его отложить столько счетных палочек, сколько, например, было зверей в истории. После того как вы сосчитали, сколько в сказке было зверюшек, спросите, кого было больше, кого - меньше, кого - одинаковое количество. Сравнивайте игрушки по величине: кто больше - зайка или мишка, кто меньше, кто такого же роста.

Пусть дошкольник сам придумывает сказки с числительными. Пусть он скажет, сколько в них героев, какие они (кто больше - меньше, выше - ниже), попросите его во время повествования откладывать счетные палочки. А затем он может нарисовать героев своей истории и рассказать о них, составить их словесные портреты и сравнить их.

Очень полезно сравнивать картинки, в которых есть и общее, и отличное. Особенно хорошо, если на картинках будет разное количество предметов. Спросите малыша, чем отличаются рисунки. Просите его самого рисовать разное количество предметов, вещей, животных и т. Д.

Подготовительная работа по обучению детей элементарным математическим действиям сложения и вычитания включает в себя развитие таких навыков, как разбор числа на составные части и определение предыдущего и последующего числа в пределах первого десятка.

В игровой форме дети с удовольствием угадывают предыдущие и последующие числа. Спросите, например, какое число больше пяти, но меньше семи, меньше трех, но больше единицы и т. д. Дети очень любят загадывать числа и отгадывать задуманное. Задумайте, например, число в пределах десяти и попросите ребенка называть разные числа. Вы говорите, больше названное число задуманного вами или меньше. Затем поменяйтесь с ребенком ролями.

Для разбора числа можно использовать счетные палочки. Попросите ребенка выложить на стол две палочки. Спросите, сколько палочек на столе. Затем разложите палочки по двум сторонам. Спросите, сколько палочек слева, сколько справа. Потом возьмите три палочки и также разложите на две стороны. Возьмите четыре палочки, и пусть ребенок разделит их. Спросите его, как еще можно разложить четыре палочки. Пусть он поменяет расположение счетных палочек таким образом, чтобы с одной стороны лежала одна палочка, а с другой - три. Точно так же последовательно разберите все числа в пределах десятка. Чем больше число, тем, соответственно, больше вариантов разбора.

Необходимо познакомить малыша с основными геометрическими фигурами. Покажите ему прямоугольник, круг, треугольник. Объясните, каким может быть прямоугольник (квадрат, ромб). Объясните, что такое сторона, что такое угол. Почему треугольник называется треугольником (три угла). Объясните, что есть и другие геометрические фигуры, отличающиеся количеством углов.

Пусть ребенок составляет геометрические фигуры из палочек. Вы можете задавать ему необходимые размеры, исходя из количества палочек. Предложите ему, например, сложить прямоугольник со сторонами в три палочки и четыре палочки; треугольник со сторонами две и три палочки.

Составляйте также фигуры разного размера и фигуры с разным количеством палочек. Попросите малыша сравнить фигуры. Другим вариантом будут комбинированные фигуры, у которых некоторые стороны будут общими.

Например, из пяти палочек нужно одновременно составить квадрат и два одинаковых треугольника; или из десяти палочек сделать два квадрата: большой и маленький (маленький квадрат составляется из двух палочек внутри большого). С помощью палочек полезно также составлять буквы и цифры. При этом происходит сопоставление понятия и символа. Пусть малыш к составленной из палочек цифре подберет то число палочек, которое составляет эта цифра.

Очень важно привить ребенку навыки, необходимые для написания цифр. Для этого рекомендуется провести с ним большую подготовительную работу, направленную на уяснение разлиновки тетради. Возьмите тетрадь в клетку. Покажите клетку, ее стороны и углы. Попросите ребенка поставить точку, например, в нижнем левом углу клетки, в правом верхнем углу и т. п. Покажите середину клетки и середины сторон клетки.

Покажите ребенку, как рисовать простейшие узоры с помощью клеток. Для этого напишите отдельные элементы, соединяя, например, верхний правый и нижний левый углы клетки; правый и левый верхние углы; две точки, расположенные посередине соседних клеток. Нарисуйте простые "бордюрчики" в тетради в клетку.

Здесь важно, чтобы ребенок сам хотел заниматься. Поэтому нельзя заставлять его, пусть он рисует не более двух узоров за один урок. Подобные упражнения не только знакомят ребенка с основами письма цифр, но также и прививают навыки тонкой моторики, что в дальнейшем будет очень помогать ребенку при обучении написанию букв.

Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи, всегда вызывает интерес у детей.

Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость.

Если ребенок не справляется с задачей, то, возможно, он еще не научился концентрировать внимание и запоминать условие. Вполне вероятно, что, читая или слушая второе условие, он забывает предыдущее. В этом случае вы можете помочь ему сделать определенные выводы уже из условия задачи. Прочитав первое предложение, спросите малыша, что он узнал, что понял из него. Затем прочитайте второе предложение и задайте тот же вопрос. И так далее. Вполне возможно, что к концу условия ребенок уже догадается, какой здесь должен быть ответ.

Решите сами вслух какую-нибудь задачу. Делайте определенные выводы после каждого предложения. Пусть малыш следит за ходом ваших мыслей. Пусть он сам поймет, как решаются задачи подобного типа. Поняв принцип решения логических задач, ребенок убедится в том, что решать такие задачи просто и даже интересно.

Обычные загадки, созданные народной мудростью, также способствуют развитию логического мышления ребенка:

- Два конца, два кольца, а посередине гвоздик (ножницы).

- Висит груша, нельзя скушать (лампочка).

- Зимой и летом одним цветом (елка).

- Сидит дед, во сто шуб одет; кто его раздевает, тот слезы проливает (лук).

Знание основ информатики в настоящее время для обучения в начальной школе не является обязательным, по сравнению, например, с навыками счета, чтения или даже письма. Однако обучение дошкольников основам информатики, безусловно, принесет определенную пользу.

Во-первых, практическая польза обучения основам информатики будет включать в себя развитие навыков абстрактного мышления. Во-вторых, для усвоения основ действий, производимых с вычислительной машиной, ребенку понадобится применять умение классифицировать, выделять главное, ранжировать, сопоставлять факты с действиями и т. д. Следовательно, обучая малыша основам информатики, вы не только даете ему новые знания, которые пригодятся ему при овладении компьютером, но еще и попутно закрепляете некоторые умения общего характера.

Так же существуют игры, которые не только продают в магазинах, но и публикуют в различных детских журналах. Это настольные игры с игровым полем, цветными фишками и кубиками или волчком. На игровом поле обычно изображены различные картинки или даже целая история и имеются пошаговые указатели. Согласно правилам игры, участникам предлагается бросить кубик или волчок и, в зависимости от результата, выполнить определенные действия на игровом поле. Например, при выпадении какой-то цифры участник может начать свой путь в игровом пространстве. А сделав то количество шагов, которое выпало на кубике, и попав в определенную область игры, ему предлагается выполнить какие-то конкретные действия, например, перескочить на три шага вперед или вернуться в начало игры и т. д.

Таким образом, в игровой форме происходит прививание ребенку знания из области математики, информатики, русского языка, он обучается выполнять различные действия, разовьете память, мышление, творческие способности. В процессе игры дети усваивают сложные математические понятия, учатся считать, читать и писать. Самое главное - это привить малышу интерес к познанию. Для этого занятия должны проходить в увлекательной игровой форме.

ЗАКЛЮЧЕНИЕ


В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета. Математическое развитие ребенка дошкольного и младшего школьного возраста будет эффективным в том случае, когда оно представляет собой целенаправленный и непрерывный процесс активизации и формирования характерных качеств математического мышления (гибкости, системности, критичности, логичности, вариативности, рациональности и др.) что приводит к стимуляции и упрочению способностей к продуктивному оперированию математическим содержанием.Поскольку ведущим типом мышления детей дошкольного возраста является наглядно-действенное мышление, а наглядно-образное мышление представляет собой ведущий тип мышления на границе перехода в начальную школу, основным способом обучения ребенка должен стать конструктивно-моделирующий способ деятельности с математическим материалом, а основным способом развития мыслительной деятельности – эмпирическое обобщение результатов своей собственной деятельности на основе сенсорно воспринимаемой информации.

Индивидуализированный развивающий образовательный процесс, предоставляющий каждому ребенку индивидуальную траекторию движения в рамках изучения математического содержания, осуществим на математических занятиях через посредство системы конструктивных заданий на математическом материале, выполняемых ребенком самостоятельно, и при этом приводящих ребенка к осознанию различных свойств и закономерностей математического характера.

Условия, порождающие преемственные связи в едином контексте математического развития ребенка должны разрабатываться в русле непрерывности дошкольной и школьной ступеней в системе развивающего образования на основе единого концептуального подхода к построению методологии и содержания математического образования ребенка младшего возраста.

И родители, и педагоги знают, что математика - это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Самое главное - это привить ребенку интерес к познанию. Для этого занятия должны проходить в увлекательной игровой форме.

Благодаря играм удаётся сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. В начале их увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес и к самому предмету обучения.

Таким образом, в игровой форме прививание ребенку знания из области математики, научите его выполнять различные действия, разовьете память, мышление, творческие способности. В процессе игры дети усваивают сложные математические понятия, учатся считать, читать и писать, а в развитии этих навыков ребенку помогают близкие люди - его родители и педагог.

^ СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:


1. Амонашвили Ш.А. В школу - с шести лет. - М., 2002.

2. Аникеева Н.Б. Воспитание игрой. - М., 1987.

3. Белкин А.С. Основы возрастной педагогики: Учебное пособие для студентов высш. Пед. учебных заведений. - М.: Изд. центр «Академия», 2005.

4. Бочек Е.А. Игра-соревнование “Если вместе, если дружно” //Начальная школа, 1999, №1.

5. Выготский Л.С. Педагогическая психология. - М., 1991.

6. Карпова Е.В. Дидактические игры в начальный период обучения. - Ярославль, 1997.

7. Коваленко В.Г. Дидактические игры на уроках математики. - М., 2000

8. Математика от трех до семи / Учебное методическое пособие для воспитателей детских садов. – М., 2001.

9. Новосёлова С.Л. Игра дошкольника. - М., 1999.

10. Пантина Н.С. Исходные элементы психических структур в раннем детстве. /Вопросы психологии, №3, 1993.

11. Перова М.Н. Дидактические игры и упражнения по математике. - М., 1996.

12. Попова В.И. Игра помогает учиться. //Начальная школа, 1997, №5.

13. Радугин А.А. Психология и педагогика - Москва, 2000 г.

Сорокина А.И Дидактические игры в детском саду. – М.,2003.

14. Сухомлинский В.А. О воспитании. - М., 1985.

15. Тихоморова Л.Ф Развитие логического мышления детей. – СП., 2004.

16. Чилинрова Л.А., Спиридонова Б.В. Играя, учимся математике. - М., 2005.

17. Щедровицкий Г.П. Методические замечания к педагогическим исследованиям игры. // Психология и педагогика игры дошкольников. Под.ред.Запорожца - М.,2003

ПРИЛОЖЕНИЕ

Упражнения на развитие математических способностей для детей пяти - семи лет


Упражнение 1

Материал: набор фигур - пять кругов (синие: большой и два маленьких, зеленые: большой и маленький), маленький красный квадрат).

Задание: "Определи, какая из фигур в этом наборе лишняя. (Квадрат) Объясни почему. (Все остальные - круги) ".





Упражнение 2

Материал: тот же, что к упражнению 1, но без квадрата.

Задание: "Оставшиеся круги раздели на две группы. Объясни, почему так разделил. (По цвету, по размеру)".

Упражнение 3

Материал: тот же и карточки с цифрами 2 и 3.

Задание: "Что на кругах означает число 2? (Два больших круга, два зеленых круга.) Число 3? (Три синих круга, три маленьких круга) ".

Упражнение 4

Материал: тот же и дидактический набор (набор пластиковых фигурок: цветные квадраты, круги и треугольники).

Задание: "Вспомни, какого цвета был квадрат, который мы убрали? (Красного.) Открой коробочку "Дидактический набор". Найди красный квадрат. Какого цвета еще есть квадраты? Возьми столько квадратов, сколько кругов (см. упражнения 2, 3). Сколько квадратов? (Пять.) Можно сложить из них один большой квадрат? (Нет.) Добавь столько квадратов, сколько нужно. Сколько ты добавил квадратов? (Четыре.) Сколько их теперь? (Девять.)".

Упражнение 5

Материал: изображения двух яблок маленькое желтое и большое красное. У ребенка набор фигур: треугольник синий, квадрат красный, круг маленький зеленый, круг большой желтый, треугольник красный, квадрат желтый.

Задание: "Найди среди своих фигур похожую на яблоко". Взрослый по очереди предлагает рассмотреть каждое изображение яблока. Ребенок подбирает похожую фигуру, выбирая основание для сравнения: цвет, форма. "Какую фигурку можно назвать похожей на оба яблока? (Круги. Они похожи на яблоки формой.)".





Упражнение 6

Материал: тот же и набор карточек с цифрами от 1 до 9.

Задание: "Отложи направо все желтые фигуры. Какое число подходит к этой группе? Почему 2? (Две фигуры.) Какую другую группу можно подобрать к этому числу? (Треугольник синий и красный - их два; две красные фигуры, два круга; два квадрата - разбираются все варианты.)". Ребенок составляет группы, с помощью рамки-трафарета зарисовывает и закрашивает их, затем подписывает под каждой группой цифру 2. "Возьми все синие фигуры. Сколько их? (Одна.) Сколько здесь всего цветов? (Четыре.) Фигур? (Шесть.)".



1 Абашина В.В. Профессиональная подготовка будущих педагогов к управлению математическим развитием детей дошкольного возраста. Дисс. канд. пед. наук. – Сургут, 1998. – с. 15


protokol-zasedaniya-kamchatskogo-ribohozyajstvennogo-soveta.html
protokol-zasedaniya-komissii-po-otboru-pobeditelej-sredi-uchastnikov-rejtingovogo-konkursa-luchshij-predprinimatel-dona-2009-goda.html
protokol-zasedaniya-konkursnoj-komissii-po-vskritiyu-postupivshih-konkursnih-zayavok.html
protokol-zasedaniya-mezhvedomstvennoj-komissii-po-ohrane-truda.html
protokol-zasedaniya-okruzhnoj-komissii-po-obespecheniyu-bezopasnosti-dorozhnogo-dvizheniya.html
protokol-zasedaniya-sekcii-vneatmosfernaya-astronomiya-soveta-ran-po-kosmosu-ot-29-oktyabrya-2008-g.html
  • zadachi.bystrickaya.ru/prilozhenie-4-forma-reestra-zakupok-polozhenie-38-o-razrabotke-primenenii-i-monitoringe-primeneniya-perspektivnogo.html
  • kontrolnaya.bystrickaya.ru/rasskazi-scenki-nabroski-stranica-11.html
  • tetrad.bystrickaya.ru/uchebno-metodicheskij-kompleks-disciplini-sd-f-02-dengi-kredit-banki-dlya-specialnostej-stranica-5.html
  • lecture.bystrickaya.ru/7-iyul-2008-kommercheskoe-predlozhenie-rosinformresursa.html
  • lektsiya.bystrickaya.ru/programma-elektivnogo-kursa-dlya-10-klassa-mikrobiologiya.html
  • spur.bystrickaya.ru/literatura-svyazannaya-s-problemami-zarozhdeniya-zhizni.html
  • control.bystrickaya.ru/e-seton-tompson-rasskazi-o-zhivotnih-soderzhanie-domino-mustang-inohodec-po-sledam-olenya-bingo-stranica-3.html
  • znaniya.bystrickaya.ru/programma-seminara-joshkar-ola-zao-skb-.html
  • zadachi.bystrickaya.ru/saharnij-diabet-i-operativnaya-medicina.html
  • literature.bystrickaya.ru/chto-nam-delat-s-kitaem-solnce-v-rossii-voshodit-s-vostoka-razvitie-strani-sleduet-nachinat-s-dalnego-vostoka.html
  • universitet.bystrickaya.ru/stroitelstvo-v-vologodskoj-oblasti.html
  • kolledzh.bystrickaya.ru/49chelovek-fakel-frenk-edvards.html
  • pisat.bystrickaya.ru/uchebnij-plan-i-poyasnitelnaya-zapiska-k-uchebnomu-planu-po-dopolnitelnomu-obrazovaniyu-dlya-grupp-kratkovremennogo-obrazovaniya-detej-ne-poseshayushih-detskij-sad-stranica-4.html
  • znaniya.bystrickaya.ru/programma-vstupitelnogo-ekzamena-po-priemu-v-magistraturu-po-specialnosti-6m072000-himicheskaya-tehnologiya-neorganicheskih-veshestv.html
  • paragraf.bystrickaya.ru/vvedenie-uchebno-metodicheskij-kompleks-po-discipline-kriminologiya-pechataetsya-po-resheniyu-kafedri-ugolovno-pravovie.html
  • portfolio.bystrickaya.ru/osnovnaya-programma-13-informacionnie-tehnologii-otchet-o-vipolnenii-programmi-za-dvuhletnij-period-2004-2005.html
  • grade.bystrickaya.ru/obidennost-hronoputeshestvij-v-budushem-kniga-iii.html
  • uchenik.bystrickaya.ru/literaturno-hudozhestvennaya-poziciya-kadetskoj-zhurnalistiki-zveno-malo-poslednie-novosti-deyatelnost-g-v-adamovicha-i-a-n-benua.html
  • testyi.bystrickaya.ru/59departament-stroitelstva-i-arhitekturi-merii-goroda-novosibirska-reshenie-ot-23-05-2012.html
  • notebook.bystrickaya.ru/informacionnij-byulleten-administracii-sankt-peterburga-32-683-23-avgusta-2010-g.html
  • composition.bystrickaya.ru/ponyatie-rabochego-vremeni-3.html
  • control.bystrickaya.ru/ekonomika-turizma-sushnost-turizma-i-planirovanie-chast-2.html
  • bukva.bystrickaya.ru/s-imoronskie-principi-raboti-s-signalami-kurs-nachinayushego-volshebnika-kniga-znakomit-s-osnovami-igrovogo-ezotericheskogo.html
  • books.bystrickaya.ru/defining-modeling-costing-it-services-kafedra-upravleniya-informacionnimi-resursami-predpriyatiya.html
  • abstract.bystrickaya.ru/2-drevnerusskie-knyazhestva-i-zemli-specifika-politicheskoj-organizacii.html
  • ucheba.bystrickaya.ru/pravleniyah-ukrepiv-dalnejshuyu-politicheskuyu-i-ekonomicheskuyu-vzaimozavisimost-moldovi-i-es-rasshirenie-predostavlyaet-moldove-i-es-vozmozhnost-razvitiya-posledova.html
  • control.bystrickaya.ru/chast-vtoraya-tri-vzglyada-v-beskonechnost.html
  • learn.bystrickaya.ru/gosduma-chetvertogo-soziva-zavershila-svoyu-rabotu-grizlov-b-v-monitoring-smi-17-19.html
  • literatura.bystrickaya.ru/sistema-garantii-kachestva-obrazo-vatelnih-resursov-i-raboti-so-studentami.html
  • desk.bystrickaya.ru/pervij-komu-prishla-misl-sravnit-zhivopis-i-poeziyu-bil-chelovekom-tonkogo-stranica-9.html
  • nauka.bystrickaya.ru/v-rezultate-izucheniya-disciplini-student-dolzhen-formirovanie-predstavleniya-o-meste-istoricheskoj-nauki-v-sisteme.html
  • notebook.bystrickaya.ru/ii-vtoraya-stadiya-funkciya-proizvoditelnogo-kapitala-kniga-p-process-obrasheniya-kapitala-izdan.html
  • occupation.bystrickaya.ru/obrazec-28-metodicheskoe-posobie-po-ekologicheskoj-ocenke-investicionnih-proektov.html
  • letter.bystrickaya.ru/nebalansiruemie-scheta-instrukciya-po-byudzhetnomu-uchetu-chast-i-organizaciya-byudzhetnogo-ucheta.html
  • esse.bystrickaya.ru/razdel-iii-sanitarnaya-ohrana-territorii-centr-gigieni-i-epidemiologii-v-respublike-kareliya.html
  • © bystrickaya.ru
    Мобильный рефератник - для мобильных людей.